
CMPS242 Machine Learning Final Project Report

Eriq Augustine EAUGUSTI@UCSC.EDU

Student ID: 1116667

Varun Embar VEMBAR@UCSC.EDU

Student ID: 1566148

Dhawal Joharapurkar DJOHARAP@UCSC.EDU

Student ID: 1566168

Xiao Li XLI111@UCSC.EDU

Student ID: 1461332

Team 0: Para-normal Distributions - https://github.com/eriq-augustine/242-2016

1. Problem Statement
Our project is focused around helping business owners find
potential competitors if they choose to open a branch in a
new location. Using this information the business owners
can not only find potential competitors, but also get an idea
of how well their business will be received in the new lo-
cality.

We say that a “competitor” is any similar business, with the
idea that a similar business caters to a similar clientele and
is therefore a competitors. Therefore our task involves find-
ing similar businesses in other regions. We do this by first
clustering similar businesses. Once we have the clusters, to
find similar businesses in a location, we look into the clus-
ter to which a given restaurant belongs to, and then display
restaurants in that cluster that are close to the location.

We use the k-medoids algorithm to cluster the businesses as
not all attributes are numeric in nature and we need a richer
set of dissimilarity scores. We run experiments with var-
ious parameter settings, dissimilarity scores, and features
and report the rand index on a “gold standard” data set.

2. Algorithm Formulation
We use the K-medoid clustering algorithm to cluster busi-
nesses. K-medoids is a clustering technique that tries to
minimize the pairwise dissimilarity between data points
that are assigned to a cluster and the medoid of that cluster.
The medoid is a data point in data set that best represent
the cluster center. The medoid is analogous to the centroid
in the K-Means algorithm.

The K-Medoids algorithm has the following advantage
over K-Means.

• Since we are only using pairwise comparisons, we
do not need to be able to calculate the average of a
feature. This is better for non-numeric features like
strings or sets.

• Since we are only using pairwise comparisons, once
we compute the dissimilarity between the data points,
we can do away with the actual data points, and this
leads to a reduction in the memory usage and makes
the computation more efficient.

• Since our medoid is a real data point (as opposed to
a centroid), we can use this data point as a “repre-
sentative” when visualizing our data (or perhaps even
sampling it).

Our stopping condition is either when we have run through
10 iterations of clustering (experimentally found to be suf-
ficient with this dataset), or when the current set of clusters
is the same as either the last run or the run before it. We
compare not just the most recent run so that we can prevent
unnecessary runs when the clusters are jittering, or when
outlier points are constantly shifting their membership back
and forth between two or more clusters.

3. Distance Metrics
To compare our features, we use several different distance
metrics. In this section, we will discuss only metrics that
were used in our final experiments. However, we imple-
mented and explored several different metrics that will be
covered in Appendix B.

Our distance metrics fall into two categories: numeric and
set-based. For numeric, we implemented L1 and L2 dis-
tances. For set-based, we implemented Jaccard and Dice.

https://github.com/eriq-augustine/242-2016

CMPS242 Machine Learning Final Project Report

To make combining the distance of different features to-
gether easier, we also attempt to normalize the output of
the distance to ideally be in the range 0 to 1.

3.1. L1 (Manhattan) Distance

The Manhattan distance of two numbers x and y is calcu-
lated by:

d =

n∑
i=1

|xi − yi|

3.2. L2 (Euclidean) Distance

The Euclidean distance of two numbers x and y is calcu-
lated by:

d =

√√√√ n∑
i=1

(xi − yi)2

3.3. Jaccard Distance

The Jaccard distance of two set A and B is calculated by:

dj(A,B) = 1− |A ∩B|
|A ∪B|

3.4. Dice distance

The Dice distance of two set A and B is calculated by:

dd(A,B) = 1− 2|A ∩B|
|A|+ |B|

3.5. Normalizations

Because different distance metrics work with different out-
put ranges, we need to normalize the distances metrics to
something consistent. For example, the range of Jaccard
Distance is between 0 and 1 while the range of Manhattan
Distance is 0 to infinity.

To figure out what works best, we will try three different
normalization methods:

1. Raw - No normalization is applied.

2. Logarithmic - Use a logarithm to squash down the
value closer to zero. Since we did not want to let val-
ues less than 1 grow, we put a hinge at 1 and just let
all values less than 1 go to zero.

distance(d) = ln(max(1, d))

3. Logistic - Use the Sigmoid function to squash the dis-
tance down to a 0-1 range. Since all our distance met-
rics return non-negative values, we can ensure that the
following returns a value in the range of 0 to 1:

distance(d) = (
1

1− exp(−d)
− 0.5) ∗ 2

4. Features
Our set of features can be divided into three types of fea-
tures:

• Numeric Features

– Star Rating - The star ratings of a business,
rounded to half-stars.

– Total Review Count - The total number of re-
views present for the business.

– Available Review Count - The number of re-
views available for the business in the data set.

– Mean Review Length - Average length of a re-
view for the business.

– Mean Word Length - Average length of the
words in the reviews for the business.

– Number of Words - Total number of words in
the reviews of the business.

– Mean Words per Review - Average number of
words per review available for the business.

• Descriptive Features
The dataset also contains some textual data such as at-
tributes, categories, review text, etc. which describe
the businesses. We construct features using these
texts, but to improve efficiency of our model we en-
code the string data as a set of unique integers by
building maps over all possible values that these fea-
tures can take. So, our output feature is a set of iden-
tifiers of the words present for the business.

– Attribute Features - The dataset contains infor-
mation about attributes of businesses which de-
scribe the operations of the business. They ex-
ist as key-value pairs in the data, for example -
(WiFi, no), (Delivery, false), (Attire, casual). We
squash the key-value pairs together and add these
together to create a set of attributes that a busi-
ness has, which we then use as a feature.

– Category Features - The dataset also contains
some categorical information about the business,
for example, whether the business is a restaurant,
cafe, food place, burgers place, etc. We construct
the feature which is the set of categories that the
business has assigned to it.

CMPS242 Machine Learning Final Project Report

– Key Words - These are words that Yelp has de-
fined to help users in filtering out the businesses
that appear in the search results. They’re words
that delineate businesses as they’re mostly cate-
gorical words such as restaurant, cafes, etc. We
use these key words and look for their occur-
rences in the reviews of the businesses and return
a set of key words that they contain.

– Top Words - This set contains the most fre-
quently occurring words in the reviews of the
text, after taking care of the stop words. We used
a general English language stop words list con-
taining 562 stop words.

• Temporal Features
We have two time-related features pertaining to the
functioning hours of businesses

– Total Hours - Total number of hours the business
is open during the week

– Open Hours - This is a feature encoded informa-
tion about the functioning hours of the business
over the week. We divided the hours in a day in
the following way to help us attribute the func-
tioning times to a business.

∗ Open between 6AM - 12PM: The restaurant
functions in the morning, or serves breakfast.

∗ Open between 12PM - 3PM: The restaurant
functions in the afternoon, or serves lunch.

∗ Open between 5PM - 9PM: The restaurant
functions in the evening, or serves dinner.

∗ Open between 9PM - 2AM: The restaurant
functions post dinner, or late night.

However, to make our feature more robust, we
specify that to encode that a business functions
during a specific time-span specified above, it
must be open for at least 4 days in a week during
those hours. We again return a set of the time-
spans that a business operates during as a set.

5. Evaluation
In order to evaluate the correctness of the generated clus-
ters, we create sets of restaurants that are similar. Using
these sets as the “gold standard” clusters, we report the
Rand Index.

5.1. Rand Index

Rand Index is used in data clustering to measure the simi-
larity between two cluster assignments. Given a set of ele-
ments S, and two partitions of S, X = {X1, X2, . . . , xn}
and Y = {Y1, Y2, . . . , Ym}, we compute the following

• a - No. of pairs that are assigned to same cluster in
both X and Y

• b - No. of pairs that are assigned to different clusters
in both X and Y

• c - No. of pairs that are assigned to same cluster in X
but to different clusters in Y

• d - No. of pairs that are assigned to different clusters
in X but to same cluster in Y

The rand index is then given by R = a+b
a+b+c+d

5.2. Generating Gold Standard Clusters

Since we do not have the gold standard clusters, we cluster
a subset of the data and evaluate the algorithm on these data
points.

We looks at various restaurant chains such as “Taco Bell”,
“Starbucks” etc. that are present in the data and assign all
the stores belonging to the same chain as a new cluster. We
extracted the top 15 restaurant chains and their details are
given in Table 1. We only generate pairs within a restaurant
chain. Since it is not clear if a McDonald’s and a Burger
King should be in the same or different cluster, we do not
look at pairs across various chains.

However if we only have positive pairing, then the rand in-
dex can be trivially maximized by assigning all data points
to the same cluster. To counteract this, we also need pairs
of restaurants that should not be in the same cluster. We
collected a list of 285 “fine-dining” restaurants (restaurants
which have the highest price range) and create pairs such
that, the first restaurant comes from the “fast food” list like
“McDonald’s” and “Taco Bell” and the other from the fine-
dining list. These pairs should not be in the same cluster.

6. Experiments
We use all 3069 restaurants present in the gold standard
dataset for our experiments.

There are four different parameters that we can tune in our
algorithm:

1. D - the set of features

2. K - the number of clusters

3. F - the function used to normalize various distance
metrics

4. S - the distance measure used to measure set similarity

We run multiple experiments, keeping a few of these pa-
rameters fixed, and altering others to better understand the
sensitivity of each parameter.

CMPS242 Machine Learning Final Project Report

Restaurants No of branches
Starbucks 527
Subway 408

McDonald’s 365
Taco Bell 193

Burger King 167
Pizza Hut 159
Wendy’s 149

Panda Express 122
Dunkin’ Donuts 122
Domino’s Pizza 107

KFC 99
Chipotle Mexican Grill 97

Dairy Queen 96
Papa John’s Pizza 92
Jack in the Box 81

Fine Dining 100

Table 1. List of restaurant chains

Features Rand Index
A 0.9070
W 0.8523
N 0.6498

AW 0.9295
WN 0.6948
AN 0.7269

NAW 0.8267

Table 2. K = 10, F = logistic, S = Dice

In the first experiment, we modify the feature set keeping
other parameters fixed. The possible features are N (Nu-
meric features), A (Attribute descriptive features (attributes
and categories)), W (Word descriptive features (key words
and top words))1. We set K = 10, F to logistic normaliza-
tion, and S to Dice. The results are shown in table 2.

We observe that the combination of Attribute and Word
gives the best performance, followed by Attribute alone.
We also observe that numeric features lead to deterioration
of performance.

In the second experiment, we keep the number of clusters
and the feature set fixed and alter the normalization func-
tion F and the set distance. We use the setting K = 10, and
use all the features (Numeric, Attribute, and Word). The
results are shown in table 3.

We observe that the best performance is achieved when we
use Jaccard similarity. We also observe that using normal-

1Because of time constraints, temporal features were not in-
cluded in these experiments. Partial results for temporal features
can be found in Appendix A.

Normalization Set Distance Rand Index
Log Dice 0.685091
Log Jaccard 0.672223

Logistic Dice 0.826786
Logistic Jaccard 0.785894

None Dice 0.667862
None Jaccard 0.667858

Table 3. K = 10, D = NAW

k Rand Index
8 0.7872

10 0.8267
12 0.7780
14 0.7652
16 0.7486
18 0.7464

Table 4. D = NAW, F = logistic, S = Jaccard

ization does not make any difference to the metrics.

In our third experiment, we modify the number of clusters
K, keeping the other parameters fixed. We set the set dis-
tance to Jaccard and the normalization to logistic and use
all the features (Numeric, Attribute, and Word). The met-
rics are given in table 4.

We observe that the best setting for K is 10. We also ob-
serve that as we increase the number of clusters from 10,
the rand index decreases. This could be due to the good
clusters being split into many clusters resulting in decreas-
ing rand index. Another reason could be that the num-
ber of “same clusters” pairs in the gold standard dataset
is much higher than the number of “across cluster” pairs.
This could result in rand index preferring fewer and larger
clusters over many small clusters.

The full results can be seen in Appendix D.

7. Conclusion
Clustering works fairly well for this dataset. The signals
that most strongly indicate that two businesses are the same
come from the reviews rather than the more structured data
like number of stars. Our work with the textual features
was limited to just a few instances of “low-hanging fruit”
But if the success of those features is any indication of the
richness of the reviews, then the reviews should be the fo-
cus of future work.

CMPS242 Machine Learning Final Project Report

Appendices
A. Temporal Feature Experiments
Time constraints lead us to not being able to complete the
experiments with Temporal features. However, we do have
partial results.

It does not look like Temporal features are stronger than
Attribute or Word features. However, we see Temporal fea-
tures performing better than most combinations which in-
clude Numeric features. We already know that the Numeric
features are detrimental, but it is very interesting that Tem-
poral beats it when we consider what is represented by each
feature. Numeric features contain information such as the
restaurants star rating, but Temporal features just have in-
formation about when a place is open.

Feature Set K Scalar Normalization Set Distance Rand Index
NAWT 8 Log Dice 0.694153
NAWT 8 Log Jaccard 0.686108
NAWT 8 Logistic Dice 0.774644
NAWT 8 Logistic Jaccard 0.764851
NAWT 10 Log Dice 0.700142
NAWT 10 Log Jaccard 0.695933
NAWT 10 Logistic Dice 0.761750
NAWT 10 Logistic Jaccard 0.740966
NAWT 12 Log Dice 0.694220
NAWT 12 Log Jaccard 0.698511
NAWT 12 Logistic Dice 0.787857
NAWT 12 Logistic Jaccard 0.749919
NAWT 14 Log Dice 0.704690
NAWT 14 Log Jaccard 0.708275
NAWT 14 Logistic Dice 0.765841
NAWT 14 Logistic Jaccard 0.747909
AWT 10 N/A Jaccard 0.718515
NAT 10 Logistic Jaccard 0.742525
NWT 10 Logistic Jaccard 0.703385
T 10 N/A Jaccard 0.779835

B. Additional Distance Metrics
We implemented and explored using string similarity met-
rics to compute distance. However, we were not able to
find suitable features to use string distance with.

B.1. Levenshtein Distance

The distance of two strings a and b is evaluate by Leven-
shtein distance:

leva,b(i, j) =


max(i, j), if min(i,j)=0

min =

 leva,b(i− 1, j) + 1
leva,b(i, j − 1) + 1
leva,b(i− 1, j − 1) + 1(ai 6= bj)

otherwise

(1)
Then we normalize the Levenshtein distance leva,b by
transaction function to the range of [0, 1], la and lb rep-
resent the length of ’a’ and ’b’.

dis =
leva,b

max(la, lb)

B.2. Needleman-Wunsch Distance

The distance of two string ’a’ and ’b’ is calculated by
Needleman-Wunsch algorithm. We calculate the distance
by comparing the letters in two strings. The scoring way is
as follows:

• Match = 1: two letters ai and bj are the same

• Mismatch = -1: two letters ai and bj are the different

• Indel = -1:

– Delete: one letter in the string ’a’ aligns to a gap
in the string ’b’.

– Insert: one letter in the string ’b’ aligns to a gap
in the string ’a’.

The pseudo-code for the Needleman-Wunsch algorithm is
as follows:

for i = 0 to length(a) do
F (i, 0)← −i

end for
for j = 0 to length(b) do
F (0, j)← −j

end for
for i = 1 to length(a) do

for j = 1 to length(b) do

if a[i] == a[j] then
Match← F (i− 1, j − 1) + 1

else
Mismatch← F (i− 1, j − 1)− 1

end if
Insert← F (i, j − 1)− 1
Delete← F (i− 1, j)− 1
F (i, j)← max(Match,Mismatch, Insert,Delete)

end for
end for

Then we need to normalize the Needleman-Wunsch dis-
tance NWa, b by transaction function to the range of [0,
1]. la and lb are the length of string ’a’ and ’b ’.

dis =
NWa, b−max(la, lb)

−2 ∗max(la, lb)

C. Implementation Details
C.1. Code

Our code is hosted on GitHub: https://github.com/eriq-
augustine/242-2016. Since we have implemented all our
methods ourselves, numpy is the only dependency required
to run our code.

https://github.com/eriq-augustine/242-2016
https://github.com/eriq-augustine/242-2016

CMPS242 Machine Learning Final Project Report

C.2. Data

To better handle and analyze the Yelp data, we first put
it into a relational database. We are using PostgreSQL.
Our resulting schema was 12 tables in Boyce-Codd nor-
mal form. The create table statements can be found in our
repository at data/sql/create.sql.

The script to parse the Yelp data and convert it to SQL in-
sert statements can be found at data/sql/parse.rb.

Having the data in a relational database also gives us the
advantage of indexes and precomputations. Non-trivial in-
formation like the term frequencies over all reviews can be
precomputed and stored in tables for use in more complex
features. Additionally, we can tune our feature query with
indexes targeted at our specific features. The SQL file that
handles precomputations and optimizations can be found at
data/sql/optimize.sql.

C.3. Optimizations

Clustering may be a fairly simple task, but it can quickly
get very resource intensive.

C.3.1. MEMORY

The Yelp dataset contains approximately 40000 restaurants
(based on the given categories). Since the resulting dis-
tance matrix is symmetric matrix and we do not need to
keep the values on the diagonal (all points are 0 distance
to themselves), that means we need to compute exactly
n · (n− 1)/2, or 40000 · 39999/2 = 799, 980, 000.

A naive method would be too keep these values in a map
structure comprised of maps to floats. Assuming a float
takes up 64 bits and an int takes 64 bits, then this means
that a naive representation of the distance matrix would
require a float for the value and two integers for the keys
which would take up at least: 799, 980, 000 ∗ (3 ∗ 64) =
153, 596, 160, 000bits = 17.88GB.

This is a but unwieldy for most laptops. We can improve
this by using a single array instead of a map. Then, we only
need to store the actual distance value and not the keys.
This would reduce our size cost down to; 799, 980, 000 ∗
64 = 51, 198, 720, 000bits = 5.96GB.

However, we can further reduce our memory cost by choos-
ing a more cost-efficient data type. Since we are normal-
izing our distance functions to return a value in the range
of 0 to 1, we do not expect our distances to grow too large.
Therefore, we can feel safe using a smaller data type such
as a 16-bit float. This will further reduce the size down
to: 799, 980, 000 ∗ 16 = 12, 799, 680, 000bits = 1.49GB,
1/12 our original cost.

C.3.2. MULTIPROCESSING

Just the precomputation of the distance matrix for our
ground truth involves calculating 4,707,846 similarities
(which is still nothing when compared to the 799,980,000
required for all restaurants). To speed this up, we took ad-
vantage of multiprocessing and shared memory.

D. Full Results
Below are the full results from our experiments on differ-
ent parameters. The “Feature Set” column describes the
features that were included in that run.

• N - Numeric Features

• A - “Attribute” Descriptive Features (attributes and
categories)

• W - “Word” Descriptive Features (key words and top
words)

Note that scalar normalizations only make sense in the
presence of numeric features (’N’), while set distance only
makes sense in the presence of non-numeric features (’A’
& ’W’).

Feature Set K Scalar Normalization Set Distance Rand Index
NAW 8 Log Dice 0.660370
NAW 8 Log Jaccard 0.661637
NAW 8 Logistic Dice 0.787228
NAW 8 Logistic Jaccard 0.790557
NAW 8 None Dice 0.659138
NAW 8 None Jaccard 0.659138
NAW 10 Log Dice 0.685091
NAW 10 Log Jaccard 0.672223
NAW 10 Logistic Dice 0.826786
NAW 10 Logistic Jaccard 0.785894
NAW 10 None Dice 0.667862
NAW 10 None Jaccard 0.667858
NAW 12 Log Dice 0.680260
NAW 12 Log Jaccard 0.677921
NAW 12 Logistic Dice 0.778079
NAW 12 Logistic Jaccard 0.763160
NAW 12 None Dice 0.669829
NAW 12 None Jaccard 0.669829
NAW 14 Log Dice 0.681115
NAW 14 Log Jaccard 0.674080
NAW 14 Logistic Dice 0.765209
NAW 14 Logistic Jaccard 0.757906
NAW 14 None Dice 0.670226
NAW 14 None Jaccard 0.670226
NAW 16 Log Dice 0.675980
NAW 16 Log Jaccard 0.674917
NAW 16 Logistic Dice 0.748661
NAW 16 Logistic Jaccard 0.760910
NAW 16 None Dice 0.670803
NAW 16 None Jaccard 0.670918
NAW 18 Log Dice 0.676348
NAW 18 Log Jaccard 0.686562
NAW 18 Logistic Dice 0.746411
NAW 18 Logistic Jaccard 0.757685
NAW 18 None Dice 0.669489
continued...

https://github.com/eriq-augustine/242-2016/blob/master/data/sql/create.sql
https://github.com/eriq-augustine/242-2016/blob/master/data/sql/parse.rb
https://github.com/eriq-augustine/242-2016/blob/master/data/sql/optimize.sql

CMPS242 Machine Learning Final Project Report

Feature Set K Scalar Normalization Set Distance Rand Index
NAW 18 None Jaccard 0.669458
AW 10 N/A Dice 0.929555
AW 10 N/A Jaccard 0.855210
AW 12 N/A Dice 0.870459
AW 12 N/A Jaccard 0.864035
AW 14 N/A Dice 0.851381
AW 14 N/A Jaccard 0.842278
AW 16 N/A Dice 0.850255
AW 16 N/A Jaccard 0.844351
AW 18 N/A Dice 0.848773
AW 18 N/A Jaccard 0.851001
NA 8 Log Dice 0.659055
NA 8 Log Jaccard 0.658976
NA 8 Logistic Dice 0.742567
NA 8 Logistic Jaccard 0.770920
NA 10 Log Dice 0.670728
NA 10 Log Jaccard 0.671137
NA 10 Logistic Dice 0.726959
NA 10 Logistic Jaccard 0.737731
NA 10 None Dice 0.667858
NA 10 None Jaccard 0.667858
NA 12 Log Dice 0.671808
NA 12 Log Jaccard 0.673073
NA 12 Logistic Dice 0.723300
NA 12 Logistic Jaccard 0.729915
NA 12 None Dice 0.669829
NA 12 None Jaccard 0.669829
NA 14 Log Dice 0.667990
NA 14 Log Jaccard 0.669195
NA 14 Logistic Dice 0.714399
NA 14 Logistic Jaccard 0.722061
NA 14 None Dice 0.670182
NA 14 None Jaccard 0.670232
NA 16 Log Dice 0.678210
NA 16 Log Jaccard 0.676306
NA 16 Logistic Dice 0.712950
NA 16 Logistic Jaccard 0.726035
NA 16 None Dice 0.670561
NA 16 None Jaccard 0.670614
NA 18 Log Dice 0.678099
NA 18 Log Jaccard 0.676272
NA 18 Logistic Dice 0.708987
NA 18 Logistic Jaccard 0.719783
NA 18 None Dice 0.669363
NA 18 None Jaccard 0.669419
NW 10 Log Dice 0.669719
NW 10 Log Jaccard 0.684106
NW 10 Logistic Dice 0.694825
NW 10 Logistic Jaccard 0.669269
NW 10 None Dice 0.667752
NW 10 None Jaccard 0.667750
NW 12 Log Dice 0.671185
NW 12 Log Jaccard 0.684292
NW 12 Logistic Dice 0.694171
NW 12 Logistic Jaccard 0.674548
NW 12 None Dice 0.669814
NW 12 None Jaccard 0.669810
NW 14 Log Dice 0.670793
NW 14 Log Jaccard 0.677972
NW 14 Logistic Dice 0.694405
NW 14 Logistic Jaccard 0.675936
NW 14 None Dice 0.670697
NW 14 None Jaccard 0.670578
NW 16 Log Dice 0.672472
NW 16 Log Jaccard 0.676489
NW 16 Logistic Dice 0.692137
NW 16 Logistic Jaccard 0.681405
NW 16 None Dice 0.670888
NW 16 None Jaccard 0.670706
NW 18 Logistic Dice 0.698928
continued...

Feature Set K Scalar Normalization Set Distance Rand Index
NW 18 Logistic Jaccard 0.681717
A 10 N/A Dice 0.907089
A 10 N/A Jaccard 0.969376
A 12 N/A Dice 0.898305
A 12 N/A Jaccard 0.910638
A 14 N/A Dice 0.869441
A 14 N/A Jaccard 0.911598
A 16 N/A Dice 0.826885
A 16 N/A Jaccard 0.907550
N 8 Log N/A 0.657650
N 8 Logistic N/A 0.644067
N 8 None N/A 0.659098
N 10 Log N/A 0.657301
N 10 Logistic N/A 0.649856
N 10 None N/A 0.667856
N 12 Log N/A 0.669908
N 12 Logistic N/A 0.665688
N 12 None N/A 0.669810
N 14 Log N/A 0.673658
N 14 Logistic N/A 0.661820
N 14 None N/A 0.670462
N 16 Log N/A 0.669040
N 16 Logistic N/A 0.666306
N 16 None N/A 0.670721
N 18 Log N/A 0.669534
N 18 Logistic N/A 0.661045
N 18 None N/A 0.669127
W 10 N/A Dice 0.852379
W 10 N/A Jaccard 0.816539
W 12 N/A Dice 0.860230
W 12 N/A Jaccard 0.815057
W 14 N/A Dice 0.859987
W 14 N/A Jaccard 0.814819
W 16 N/A Dice 0.819333
W 16 N/A Jaccard 0.798225
W 18 N/A Dice 0.773908
W 18 N/A Jaccard 0.769316

