
Standoff: An Evolutionary Analysis

Dhawal Joharapurkar
Jessica Purser
William Sump

University of California, Santa Cruz

May 25, 2017

Abstract

This paper is an equilibrium analysis of Standoff, a stochastic game involving simultaneous

move stages with state transitions. Players must decide their best response dependent upon

their state, the states of the opposing players, and the states of players in the succeeding stage.

In order to analyze Standoff, we constructed strategic form stage diagrams, bi-matrices for

two- and three-player versions of Standoff, and determined a mixed strategy per stage of the

game. To win, each player should make decisions in a manner that maximizes the probability

of being the last man standing. A winning strategy is a complete action plan, which specifies

a decision at each stage considering the state combination. Our analysis finds a symmetric

equilibrium strategy at a given stage and uses evolutionary dynamics to ascertain the stability

of our equilibrium.

1

Contents
1 Introduction 3

2 Model 5
2.1 Instructions . 6
2.2 Actions and States . 7
2.3 Stage Diagram Two Players, All Strategies . 10
2.4 Stage Diagram Two Players, Non-Dominated Strategies 10

3 Simulation 11
3.1 R: Generating the Strategy Set . 12
3.2 Python: Execution of Replicator Dynamics . 13

4 Results 15
4.1 Payoff Matrices . 18

5 Conclusion 19

6 Appendix 23
6.1 Two Player Matrices . 23
6.2 Python Code - Standoff Game . 29
6.3 Python Code - Replicator Dynamics . 35
6.4 R Code - To Generate Strategies . 36

2

1 Introduction

The game of Standoff is similar to rock-paper-scissors, but is more complex, requires additional

strategic planning and has guns! Popular with young children, Standoff is a game made from the

common movie trope where individuals are in gridlock with guns blazing and with fatal conse-

quences. The depth of this game is characterized by means of stage transitions in which decisions

are made simultaneously. The discrete-time game of Standoff meets all necessary conditions in

order to be a stochastic game, a model developed by Lloyd Shapley in 1953 to describe a classifica-

tion of repeated games with probabilistic transitions. Our game of interest is played sequentially

through a series of stages with each beginning in some specified state. An alternative way of illus-

trating this is that at a given stage, the game encompasses a state that describes critical conditions

of the players (the amount of bullets that they have, in the case of Standoff) that will transition

to a new state at the next stage, contingent on the game’s previous state and the actions chosen

by its players.

The game requires two or more players, each with a strategy set of reload, armor, and shoot

at a given state. A player can choose to reload in order to amass points and eventually acquire

the upgrade gun, which solidifies their chances of winning. However, this strategy comes at the

sacrifice of one’s safety by not choosing to armor. This self-exposure may be potentially costly if

another player reloaded in a prior stage, especially if the unarmored player has already reloaded

as well. Thus, each player must consider the states of all other players when calculating their best

response.

In order to analyze Standoff we constructed strategic form stage diagrams, bi-matrices for two-

player and three-player versions of Standoff, and discovered a mixed strategy per stage of the game

with a few exceptions. Standoff is a state-dependent game with simultaneous move stages with

complex state transitions. It is more complicated than a repeated game, because it is dependent

upon the outcome of the previous stage. In each new stage the best response is dependent upon

the result of the previous stage; there is a clear dynamic relationship between consecutive stages.

For example, the decision on whether to shoot would rely on how many bullets the player had

accumulated from previous stages. If one player used their last bullet in the previous stage, then

3

in the current stage, he or she is left with only the choice of armor or reload. To illustrate another

example, certain outcomes will eventuate likelier targets amongst the players e.g. the player that

has two bullets may try to upgrade while being shot at by another player.

The strategic tension of Standoff creates a payoff function whereby the relative attractiveness

of using a strategy is greater when less players are using it. The greatest amount of strategic

tension exists after the first stage (in which the null state players reload) when the players share

the same individual state (i.e. 1 Bullet vs. 1 Bullet, 2 Bullets vs. 2 Bullets). After the first stage

the strategies diversify not only due to the additional ability and strategy of the action shoot,

but also because of threat of elimination and player actions conditional on previous, current, and

probable future states. In other words, two-player Standoff is an elaborate duel. Players fire at

one another in an effort to eliminate them while surviving themselves, and consequently must to

choose the best response every stage in order to maximize their survival probability.

After the initial stage in the game each player has three available options: to reload, to armor,

or to shoot one of the opposing players. Players are either eliminated or advance to another stage

to make another decision. A new stage commences when there is more than one player remaining

at the end of the previous stage. The conclusion of each stage results in each player being in one

of five possible states: null, 1 bullet, 2 bullets, eliminated and winner. A winning strategy is a

complete action plan specifying a pure strategy at each stage with regards to the state combination

of all participating players.

The importance of studying such a game is the dynamic relationship between the strategic in-

teraction of the players, the significance of individual and game states, and the use of hindsight and

foresight (memory and strategic planning with probability) by successful players. It is a compelling

examination of particular elements in strategic determination that we would expect to see in real

life conflict. Then, from an evolutionary perspective, we see how a plethora of seemingly similar

strategies with minute distinctions interact with each other, and how those slight differences in

strategy can breed serious repercussions in a population with a massive strategy profile. These

observations give us the strategy profile(s) that attract the largest shares and, if any, the profiles

that undergo extinction. These discoveries will shed light on the evolutionary power of offensive,

defensive, and advancive strategies in situations of high risk and immediacy. The purpose of this

4

paper is to concretely explain these aspects of game theory by determining the unique symmetric

Nash Equilibrium strategy profile for the two-player game of Standoff, where each strategy is a

complete state-contingent profile, and then to expand our analysis of Standoff’s complexity into

the three-player game.

2 Model

The game commences at time (stage) t = 0 at state s0, progressing through discrete stages at

t = 1, 2, ..., At stage t in state st, each player i ∈ I is prescribed an action profile at from the finite

set A, where A = (R,A, S). Standoff’s time-frame may continue indefinitely, such as if two players

exclusively choose to reload as their action plan, which sends them through the same states, the

same rewards, and gives us a simpler type of game satisfying the conditions of a Markov chain.

However, given that such pure strategies are dominated and given a possible mixed strategy, a

standard run-through of Standoff is likely to be finite and vary in its applications.

Additionally, we include the transition probability vector p from S x A, the state space and

the complete contingency strategy set. Transition probability p(st, at) determines the next state

in the next stage st+1 relying upon the given current state and current action profile. The set of

action profiles to state space S is denoted by A = xi∈IAi
. Payoffs are determined by the action

plan at applied corresponding game Gst and are rewarded at the conclusion of the game.

Due to the complexity of the game, we will be employing a more specialized mathematical

model of stochastic analysis, called an absorbing Markov decision process, which takes into ac-

count a Standoff player entering an immutable state (elimination). This framework provides a

foundation to study decision making under circumstances where participants have only limited

control of an otherwise random outcome.

5

2.1 Instructions

Standoff can be played with any amount of players, though we limit our analysis to a duel for

simplicity and greater depth of exploration. The objective of the game is to avoid elimination and

be the last player surviving. Players will need to decide on a response (Reload, and Armor, Shoot)

before the beginning of each stage, and then simultaneously reveal their response on the count of

three.

The null state in which a player has no bullets is the state that players begin the game, return

to in the event of a draw, or return to when they have one bullet and choose to shoot. Players

can only shoot if they have reloaded in a previous stage. The 1 bullet and 2 bullets states are

resultant of a player reloading without being shot. The eliminated state of –1 is the result of player

being shot during a stage. The winner state of 3 is the result of a player being the only survivor

at the end of a stage, with losing players receiving a payoff of –1. Reloading three times permits

the player an additional, and albeit most attractive, strategy. The bazooka, which is capable of

eliminating all other competitors, ends the game with the players in the winner state if no other

player upgraded in the same stage. During gameplay, a major concern is that choosing to reload

leaves a player vulnerable to other players who choose to shoot, the probability of which rises the

more bullets a target player accrues.

In the game Standoff the response to shoot is established by signaling a gun with one’s hand

and pointing it at a target, which has the outcome of elimination and is avoided if the targeted

player chooses “armor.” When a player chooses to shoot another player they leave themselves vul-

nerable because they cannot armor themselves. Otherwise unless the targeted player also shot at

their shooter, the targeted player is eliminated. Two players shooting at each other results in a

draw and the elimination of both players if other players are present in the current stage (I.e. the

last player remaining in a three-player game is deemed the winner). If there are only two players

in the game and they choose to shoot each other, they will both begin the next stage in the null

state. Likewise if there are players shooting in a circular fashion (i.e., Player 1 shoots Player 2,

Player 2 shoots Player 3, Player 3 shoots Player 1), then all players start over in the null state.

The action of shooting consumes one bullet in addition to leaving the shooter exposed to other

6

players and, subsequently, the likelihood of being shot by them during that stage. In the case that

two or more players obtain a bazooka in the same stage, it will eliminate all other existing players

and the upgraded players will enter the next stage in the null state.

The response to reload is signified by pointing one’s gun hand in the air. Each stage that

a player reloads allows them one bullet; a player can hold a maximum of two bullets at a time.

Reloading past this capacity automatically upgrades the player’s gun to a bazooka, which will allow

the player to win the game regardless of how many players are left with the condition that no other

player upgraded in the same manner within the same stage. If this occurs, only the upgrading

players continue onto the next stage in the null state with all other players disqualified.

The response to armor is signaled by crossing one’s arms over one’s chest. Choosing armor

bestows immunity upon the player for the concurrent stage. This response is essentially the safest

option for any player to prevent their own elimination. However, armoring is not invulnerable

to a bazooka, therefore playing a strategy of strictly armoring to avoid losing may eventually be

ineffective and result in the player’s elimination from the game.

2.2 Actions and States

The state space S of Standoff contains a finite set of individual state combinations. Individual

states include null, 1 bullet, 2 bullets, eliminated and winner. For the two-player game, S =

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3,−1), (−1, 3).

The inclusion of immutable states in this state space accommodates the ambiguous resolution

of the game. Although under natural conditions it is probable that Standoff will reach a conclu-

sion with a winner and loser, the game also has the potential to be infinitely repetitive. With

the presence of deterministic strategies, the state (0, 0) supports the possibility of a draw, or an

infinite recursion of the actions in which both players return to the null state. When a draw occurs

under these circumstances, the game is ultimately absorbed by and is never able to escape the null

state. If either player wins, the game is in the absorbing states st = (3, -1) or (-1, 3), defining the

termination of the game.

To clarify, the game hypothetically never reaches (3, 3) or (-1, -1). The actions in the previous

7

stage define the state the game transitions to, so the actions that would result in a draw imme-

diately move the game to (0, 0). However (0,0) may still be a transitory state when a draw has

not occurred, such as when the game initially begins or as in the situation at (1, 0) when a player

shoots at the armor of the null-state player. The game moving between these nine transitory states

imply it is still ongoing. Thus there is a total of 11 possible states the game may move to, with

three of those states being immutable and designating the consequence of two strategies in play.

The stage diagrams provided in sections 2.3 and 2.4 illustrate the inherent dynamism of Stand-

off. The arrows indicate the game’s change or recurrence of its state as it transitions through

discrete stages. The diagram including all strategies demonstrates the game’s potential to shift

suddenly between its many states in a given stage. At a glance in both cases, 1 Bullet vs. 2 Bullets

offers the highest amount of directions the game may take.

Strategies that result in a draw (an infinite repetition of the game with no winner) originally

corresponded with the payoff 0 for both players. In other cases when two strategies concede a finite

game, the winner received a payoff of 1 and the loser -1. In order to proceed with Standoff’s repli-

cator dynamics, the payoffs assigned to these outcomes must be normalized to a 0 to 1 inclusive

range, using Min-Max scaling:

Xnorm =
X −Xmin

Xmax −Xmin

8

Xnorm =
X − (−1)

1− (−1)

Xnorm =
X + 1

2

This provides the values of 0 for the loser, 1
2 for a draw, and 1 for the winner in the computation

of the game’s replicator dynamics. In terms of the end states in S, 3 returns to a payoff of 1, -1,

returns to 0, and 0 returns to 1
2 .

It is worth mentioning that there are some recursive scenarios in the game that do not return to

(0, 0). With the use of deterministic strategies, a single game of two-player Standoff that returns

to any of the transitory states for a second time elicits a repetition of that game’s sequence to that

point. With no winner or loser in an infinitely looping game, it is therefore a draw. For example,

Player 1 may shoot an armored Player 2 at (1, 1), transition to (0, 1) with both of them reloading

to (1, 2). Then, Player 1 armors and Player 2 shoots in this situation, bringing the game back to

(1, 1). This is overcome in the code because of the use of finite sets of strategies. If the simulation

has run through every state’s action in a profile, it halts the loop and designates a draw for the

situation where those two strategies face each other.

9

2.3 Stage Diagram Two Players, All Strategies

2.4 Stage Diagram Two Players, Non-Dominated Strategies

10

3 Simulation

Including dominated strategies, the two-player game has 23 · 36 = 5,832 possible strategy pro-

files, encompassing all possible actions a state state in any stage. This figure is representative of

the two available actions (Reload and Armor) in the three states where the player in consideration

is in Null, and additionally all three actions (Reload, Armor, and Shoot) in the remaining six state

combinations:

Figure 1: Note that a player cannot shoot when they do not have bullets, hence the exclusion of
the action Shoot while in the null state.

Figure 2 provides the non-dominated strategies resulting from backwards induction and the

iterated deletion of strictly and weakly dominated strategies. This produces a total of 324 possible

pure strategy combinations. It is interesting to note that Reload is included as a viable strategy in

each of the nine states except in Null vs. 2 Bullets, an observation that will be key in our analysis

later.

The most effective method of analysis was initially discovered through the results of running

the simulation with all 324 profiles, then consequently reducing the tested strategy space to the

fittest twelve, then from that the fittest six profiles. The outcome of this preliminary testing made

apparent the appropriate procedure for the analysis: a tournament-style elimination of strategies

as per Axelrod’s approach in The Evolution of Cooperation. Essentially this requires removing from

11

Figure 2: Iterative deletion of strictly and weakly dominated strategies produces the listed ratio-
nalizable actions, dependent on the current state of the game.

the next run of the simulation the strategies that converged to zero (or approaching it, i.e. values

to the negative three- hundredths power). Otherwise, share values of statistical significance made

it to the next round. Therein replicator dynamics is repeated over an equal distribution for the

remaining strategies. Intuitively, this is fitting considering the nature of Standoff in itself. With

the incorporation of these 324 strategy profiles into the coded simulation, we find that following

this tournament process leads to the convergence of four evolutionarily stable strategies.

3.1 R: Generating the Strategy Set

From the complete strategy set of 5,832 profiles, the programming language R was used to

generate the 324 permutations of strategy profiles of interest, using as parameters the inclusion of

only the non-dominated strategies per state as represented in Figure 2. This produces an array of

the non-dominated strategy profile depicted in Figure 3, the values of which are imported into the

Standoff simulation written in Python.

12

3.2 Python: Execution of Replicator Dynamics

Procedurally, the simulation of Standoff entails coding the two-player game in Python, a pro-

gramming language popular for its wide range of applications. Therein the strategy set from R is

imported into the Python program to run the simulation of the 324 vs. 324 profiles. In other words,

we pitted the strategies against each other to output 104,976 payoff elements in the consequent

324x324 matrix.

The Python code designates the states of the game, wherein the simulated players’ strategy

profiles are limited to the non-dominated actions per state as per the results found using R.

With this large an array of strategies, the task of computing and observing the shares of all

324 strategies, their fitnesses (in regards to all 324 profiles), the average fitness, and then the

consequent 324 dot products per period for 1,000 periods is accomplished by loops and appending

commands written in Python code (refer to the Appendix). Each period takes into consideration

the payoffs of the strategy matrix, as depicted below in the figure.

Algebraically, replicator dynamics for Standoff follows the process:

At stage t0:

13

w1 = s1(t0)w11 + s2(t0)w12 + ...+ s324(t0)w1,324

w1 =
∑324

i si(t0)w1i

w2 =
∑324

i si(t0)w2i

...

w324 =
∑324

i si(t0)w324i

To compute replicator dynamics at stage t1:

s1(t+ 1) =
Wi

W̄
si(t), i = 1, 2, ..., 324.

s1(t1) =
s1w1∑324
i siwi

(t0)

s2(t1) =
s2w2∑324
i siwi

(t0)

...

s324(t1) =
s324w324∑324

i siwi

(t0)

...

s324(t999) =
s324w324∑324

i siwi

(t998)

Adhering to the tournament structure for replicator dynamics, convergence was achieved after

six rounds of systematic elimination. The contest of the fittest profiles proceeded as follows:

Round 1: 324x324

Round 2: 76x76

Round 3: 26x26

Round 4: 19x19

Round 5: 18x18

Round 6: 4x4

14

4 Results

Using a uniform distribution, the replicator dynamic functions were rendered in Python over

1,000 and additionally 10,000 iterations beginning at t0 to find the main basin of attraction.

Observing the changes of these 324 shares under these conditions, Strategies 95 and 96 emerge as

the main basins of attraction, holding equivalent shares of the population.

Of the 324 strategy profiles, 76 emerged with a significant share of the population. The four

highlighted here are the strategies that appear in the final round, and consistently ranked highest

amongst the majority of shares through the progression of the tournament. The strategies are

ranked by their respective share values, largest to smallest, at the conclusion of evolutionary

replication:

Figure 3: For the complete ranking of the surviving 76 strategy profiles, see Appendix.

Two hundred forty-eight of the strategy profiles became obsolete by t999, indicated by those

shares’ convergence to zero. These shares were subsequently eliminated from the simulation for

the succeeding round matching the 76x76.

In the second round of replicator dynamics, the highlighted Strategies 93, 94, 95, and 96 are

the predominant four profiles, with 95 and 96 again tied as the highest shareholders amongst

the population. This round concluded with 26 strategies retaining share values. An additional 50

strategies were eliminated and therefore a total of 298 strategies were removed from the simulation.

The 76x76 simulation in Round 2 narrowed our focus to the 26 strategies:

Thereafter, in Round 3 matching the 26x26 strategy profiles, the simulation was further suc-

cessful in eliminating 7 more strategies (totaling 305 extinct strategies) and revealed the following:

15

Here, Strategy 28 placed first with a significantly larger share than any of the other strategies.

This surge could be due to either an error or a stroke of evolutionary luck, as Strategy 28 was in

the last position with the lowest share value of the prior results. Its proportion is equivalent to the

shares of 93, 94, 95, and 96 combined. However, this does not seem to be a confounding variable

in the simulation as it is the only strategy to be eliminated in the fourth round of the competing

19x19. Additionally note that this is the first observation of the mentioned Strategies 93, 94, 95,

16

and 96 being equal constituents of the share population.

The 19x19 simulation executed in Round 5 results in the elimination of Strategy 28 and removal

of 306 of the original 324 profiles, leaving us with the surviving 18. Here, we see some even con-

vergence amongst these strategies. Once again, the highlighted Strategies 93, 94, 95, and 96 rank

highest of the outstanding, with equal shares totaling to 50% of the population. The remaining 14

strategies share evenly the other 50%.

It is at this point in our testing where the tournament would technically conclude but the

observations of the data consequent of the 18x18 lead us to conduct a final round with the top four

strategy profiles. With half the population share dispersed evenly between the consistent top four,

and the other half divided into shares of about 3.6% for the rest, the 14 strategies tying for last

place seemed to be logical grounds to eliminate them and run another simulation with Strategies

93, 94, 95, and 96. To evaluate our conclusions of the tournament’s replicator dynamics the

aforementioned procedure was repeated for these strategies over a uniform distribution, disclosing

a level convergence to the strategies:

17

4.1 Payoff Matrices

Payoff Matrix of 18 Fittest Strategy Profiles

18

5 Conclusion

The tournament concluded with each carrying a quarter of the population share, observing the

evolutionary implications of the interactions between many, slightly difference memes. From this

analysis, simultaneity and awareness of prior moves becomes clear agents in the strategic tension

studied in Standoff. Interestingly enough, the balance apparent in these findings suggests that

these are evolutionarily stable strategies. When keeping in mind the player’s perceived risk at each

state, these contingency plans make intuitive sense. The inherent value of these strategies fluctuate

due to their state dependency.

A tendency to shoot are can be considered strategically offensive, whereas a preference to armor

implies players who are sensitive to risk and would be a part of a strategically defensive population.

Reloading is strategically advancive, meaning such behavior confronts the greatest accumulative

risk but permits players a greater range of choice and assurance in winning. This is especially true

when considering larger player pools.

At state 1 Bullet vs. 1 Bullet, there is a clear evolutionary tendency to reload at this stage,

armor and shoot become extinct as strategies and are no longer considered in the fittest 18 pro-

files. When comparing the actions of states 1 Bullet vs 2 Bullets and 2 Bullets vs. 1 Bullet at

convergence, we see a growing proportion of armor at st = (1, 2) and of reload at (2, 1). All four

of the fittest strategies contain the most popular action at these states, respectively.

2 Bullets vs. 2 Bullets is the only state in which one of the three strategies, shoot, dominates

under evolutionary analysis. This is due to armor being inferior to reload- which in this case ends

the game- and this reduces the strategy space for this state to reload and shoot. Although either

action may win the game, to reload still carries the risk of vulnerability while to shoot will either

kill the other player or send both of them back to the null state. However only in the context of a

two-player game is this assertion valid. For a player in a 2 Bullet state, reload (although riskier)

may be a more viable strategy in the presence of more opponents.

Replicator dynamics allowed for the calculation of the equilibria for the two player game. Stand-

off carries a high probability of transitioning from a three to a two player state. Once the game

has transitioned, Fx(a) represents a stage with the states null vs 1 bullet, while Fx(b) represents

19

a stage with the states 1 bullet vs 2 bullets. In a stage with the states null vs 1 bullet, the action

of armor is dominated. The best strategy for victory is to choose actions that protect the player

while also focusing on reloading in order to acquire the bazooka. The resulting strategy consists

of a strategy profile utilizing armor, reloading, and shooting when the best response is reliant on

the states of the other players in each corresponding stage. In a stage where the other players are

in the null state the best response is to reload.

In order for a player to survive they must consider armoring in stages where other players are

in the 1 bullet or 2 bullets states because they can be shot. The player must take into account that

the probability of being targeted increases with each additional bullet they acquire. In theory, one

strategizing with a pattern of reloading and armoring would prove superior to a pattern consisting

of shooting before attempting to acquire the bazooka. However, this strategy could compromise

the player’s success if the opponent(s) are strategizing in a similar manner. In a real-time simu-

lation of the game, players are making decisions that they rationalize to be the best moves over

an indefinite number of stages. This aspect of the game compounded with the possibility of an

unlimited amount of players can produce an infinite amount of permutations of outcomes. Thus,

without such limits on the player population or the number of stages, a retrospective analysis

cannot be conducted nor can it fully comprehend the potential complexity of the game Standoff.

Rather, it is important to set parameters and reduce the game to one that permits a thor-

ough analysis of the fast-paced, strategic contemplation and tension comprised within Standoff.

Even when Standoff is condensed to a game with just two players, the various states that each

player can encounter each other with creates complex strategy profiles comprised of pure and

mixed Nash Equilibrium. In each stage the player must choose an action that is the best response

to the opposing player’s state in order to strategize to eliminate the other player and win the game.

In the first stage where both players are in the null state the Pure NE is for both players to

choose to reload. In a stage where both players are in the 1 bullet state the Mixed NE for both

20

players is 0.309 Reload, 0.489 Armor, and 0.202 Shoot. In a stage where both players are in the

2 bullets state the Mixed NE for both players is 0.172 Reload, 0.414 Armor and 0.414 Shoot. In

a stage where one player is in the 1 Bullet state and the other player is in the 2 Bullets state the

Mixed NE for the 1 Bullet state player is 0.414 Reload, 0.293 Armor, and 0.293 Shoot. Whereas

the Mixed NE for the 2 Bullets state player is 0.172 Reload, 0.586 Armor, and 0.242 Shoot. In a

stage where one player is in the Null state and the other player is in the 1 bullet state the Mixed

NE for the Null state player is to -0.631 Reload and 0.369 Armor. Whereas the Mixed NE for the

1 Bullet state player is to 0.631 Reload and 0.369 Shoot. In a stage where one player is in the Null

state and the other player is in the 2 Bullets state the Pure NE is for the null player to Armor and

the 2 Bullets state player to Reload.

Ratios calculated from the 19 x 19 strategy set

N vs N Reload

N vs 1 0.158 Reload and 0.841 Armor

N vs 2 Armor

1 vs N 0.579 Reload and 0.421 Armor

1 vs 1 0.947 Reload and 0.053 Shoot

1 vs 2 0.263 Reload, 0.474 Armor, and 0.263 Shoot

2 vs N Reload

2 vs 1 0.316 Reload, 0.316 Armor, and 0.368 Shoot

2 vs 2 0.737 Reload, 0.263 Shoot

Mixed Nash Equilibrium

N vs N Reload

N vs 1 0.631 Reload and 0.369 Armor

N vs 2 Armor

1 vs N 0.631 Reload and 0.369 Shoot

1 vs 1 0.309 Reload, 0.489 Armor, and 0.202 Shoot

1 vs 2 0.414 Reload, 0.293 Armor, and 0.293 Shoot

21

2 vs N Reload

2 vs 1 0.172 Reload, 0.586 Armor, and 0.242 Shoot

2 vs 2 0.172 Reload, 0.414 Armor and 0.414 Shoot

We have been attempting to model the game as a finite state transition machine wherein the

game moves from one state to another. We are fairly optimistic this will end up working better

than the existing code we have, but sadly the time allotted after discovering this solution was

not enough to properly complete its implementation. However, we plan to finish our work in its

entirety so that the results are collinear with the mixed Nash Equilibrium solved through the

matrix algebra. Also, we think that modeling it in this way gives us immense flexibility with

respect to the extensibility to a three-player game since the transitions can be explicitly encoded

into the game. We envision in the development of the new model to be an appropriate basis in the

analysis of the three-player game for future study.

22

6 Appendix

6.1 Two Player Matrices

Figure 4: Bi-matrices (2 Players)

Analysis: There is no pure Nash-Equilibrium for this stage because neither player has a strictly

dominant strategy. However, a mixed NE exists. When no Pure NE exists probabilities are assigned

to the various possible actions in order to derive the expected payoffs. A mixed NE is evaluated

according to the expected payoff that is calculated. In this stage either player can choose to Reload,

Armor or Shoot, but they can only choose one action. Thus, in terms of player 2 let p denote the

probability that player 1 will choose reload, let q denote the probability that player 1 will choose

armor and let (1-p-q) denote the probability that player 1 will choose to shoot. See below for the

calculations giving the entries in yellow.

π2(R) = 1 · p+ 1 · q +−1 · (1− p− q) = 2 · p+ 2 · q − 1

π2(A) = 0 · p+ b · q + 1 · (1− p− q) = b · q + 1− p− q

π2(S) = 1 · p+ 0 · q + 0 · (1− p− q) = p

π2(R) = 2 · p+ 2 · q − 1

π2(A) = b · q + 1− p− q

π2(S) = p

23

2 · p+ 2 · q − 1 = b · q + 1− p− q = p = b

2 · b+ 2 · q − 1 = b · q + 1− b− q = b

q = (2 · b− 1)/(b− 1)

2 · b+ 2(2 · b− 1)/(b− 1)− 1 = b

b2 + 2 · b− 1 = 0

b =
−2±

√
8

2

b = 0.414

In the mixed NE, player 1 has a higher chance of choosing reload, while player 2 has a higher

chance of choosing armor. One possible explanation might be that when the game begins, player

2 has one more bullet than player 1, putting themselves at an advantage. Therefore, he or she

could afford to play safe and choose armor with a higher probability. However, player 1 is at a

disadvantage and knows if the opponent reloads, he or she will be defeated with Bazooka, so there

is a greater incentive for them to take the risk and reload in this stage. The dominant payout for

each action of each player is written in red.

1 Bullet vs. 2 Bullets:

Mixed NE: (0.414R+0.293A+0.293S, 0.172R+0.586A+0.242S)

Expected payoff: (-0.414, 0.414)

Figure 5: Bi-matrices (2 Players)

π1(R) = −b · P +−1 · (1− P) = −b · P − 1 + P

24

π1(A) = −1 · P + 0 · (1− P) = −P

−b · P − 1 + P = −P

P =
1

2− b
=

1

2− 0.414
= 0.631

Payoff at NE is(−0.631, 0.631) = (−a, a)

a = 0.631

Null vs. 1 Bullet

For player 2, A will not be chosen at any time. So the payoff matrix is trimmed down to a 2

strategy by 2 strategy matrix with player 1 chooses from {R, A} and player 2 chooses from {R,

S}.

No pure NE exists.

Mixed NE: {(-0.631R+0.369A, 0.631R+0.369S)} Expected payoff: (-0.631, 0.631)

Analysis: If player 1 is in the null state and player 2 has 1 bullet the stage will result in a mixed

Nash-Equilibrium. Player 1 has a probability of 0.631 to reload and 0.369 to arm. While player 2,

there is a 0.631 chance he or she will choose to reload and 0.369 chance he or she will shoot.

Figure 6: Bi-matrices (2 Players)

Null vs. Null

Pure NE: {(R, R)}

Payoff: (0, 0)

25

Analysis: When both players are in the null state, the best response is for them to both reload.

Armor will never be chosen, because neither player cannot be shot by the other player. Reloading

will allow them to shoot in the next stage, while armoring will put them at a disadvantage. Thus,

armoring is strictly dominated and the best response for both players is to reload.

Figure 7: Bi-matrices (2 Players)

Null vs. 2 Bullets

Pure NE: {(A, R)}

Payoff: (-1, 1)

Analysis: Pure Nash-Equilibria exist for the stage where player 1 is in the null state and player

2 has 2 bullets. Player 1’s best response is to armor, while player 2’s best response is to reload.

Player 1 is not able to shoot player 2, so player 2 will not take the risk of shooting in this stage in

case player 1 chooses armor. Rather, the best response is to reload in order to acquire the Bazooka

and proceed to win the game in the following stage. Thus, shooting and armor are dominated

actions for player 2. While for player 1, armor strictly dominates reload. So he or she will choose

to armor anyhow.

π1(R) = 0 · P + 0.414 ·Q+−1 · (1− P −Q) = 0.414 ·Q+ P +Q = −1 + P + 1.414 ·Q

π1(A) = −0.414 · P + 0 ·Q+ 0.631 · (1− P −Q) = 0.217 · P − 0.631 ·Q+ 0.631

π1(S) = 1 · P +−0.631 ·Q+ 0 · (1− P −Q) = P − 0.631 ·Q

π1(R) = −1 + P + 1.414 ·Q

26

Figure 8: Bi-matrices (2 Players)

π1(A) = 0.217 · P − 0.631 ·Q+ 0.631

π1(S) = P − 0.631 ·Q

−1 + P + 1.414 ·Q = 0.217 · P − 0.631 ·Q+ 0.631 = P − 0.631 ·Q

Q = 0.489

−1 + P + 1.414(0.489) = 0

P = 0.309

1− P −Q = 0

1− 0.309− 0.489 = 0.202

1 Bullet vs. 1 Bullet

Mixed NE: {(0.309R+0.489A+0.202S, 0.309R+0.489A+0.202S)}

Expected payoff: (0, 0)

Analysis: There is no pure Nash-Equilibrium for this stage because no strictly dominated

strategies exist. However, a mixed NE exists that results in a probability of 0.309 for choosing

reload, 0.489 for choosing armor, and 0.202 for choosing shoot for both players. Since this is a

zero-sum game, the expected payoff would be 0 for both players.

π1(R) = 0 · P + 1 ·Q+−1 · (1− P −Q) = −1 + P + 2 ·Q

π1(A) = −1 · P + 0 ·Q+ 0.414 · (1− P −Q) = −1.414 · P − 0.414 ·Q+ 0.414

π1(S) = 1 · P − 0.414 ·Q+ 0 · (1− P −Q) = P − 0.414 ·Q

π1(R) = −1 + P + 2 ·Q

27

Figure 9: Bi-matrices (2 Players)

π1(A) = −1.414 · P − 0.414 ·Q+ 0.414

π1(S) = P − 0.414 ·Q

1 + P + 2 ·Q = −1.414 · P − 0.414 ·Q+ 0.414 = P − 0.414 ·Q

1 + P + 2 ·Q = P − 0.414 ·Q

Q = 0.414

−1 + P + 2 · (0.414) = 0

P = 0.172

1− P −Q = 0

1− 0.172− 0.414 = 0.414

2 Bullet vs. 2 Bullets

Mixed NE: {(0.172R+0.414A+0.414S, 0.172R+0.414A+0.414S)}

Expected payoff: (0, 0)

Analysis: There is no pure Nash-Equilibrium for this stage because no dominated strategies

exist. However, a mixed NE exist that result in a probability of 0.414 for choosing armor or shoot,

and 0.172 for choosing reload for both players. Since this is a zero-sum game, the expected payoff

would be 0 for them both. There is a relatively small probability of choosing to reload, for both

players know the opponent has 2 bullets, thus it is risky to reload and leave themselves vulnerable.

Even without reloading, they still retain their amount of bullets, therefore they are not too willing

to take the risk of losing to get another bullet. Both players know that reloading to acquire the

28

bazooka is an action that will result in both players entering the next stage in the null state. This

payout calculates that the players will be indifferent because they will both be in the null state in

the following stage.

6.2 Python Code - Standoff Game

import sys
import csv
import i t e r t o o l s
import numpy as np

SHOT_FIRED = False

c l a s s p laye r (ob j e c t) :

de f __init__(s e l f) :
s t o r e s the s t a t e be f o r e t r a n s i t i o n
upon shoot ing from bu l l e t 1 => old = b1
n − nul l , b1 − bu l l e t1 , b2 − bu l l e t2 , bz − bazooka

s e l f . o ld = ’n ’
s e l f . nu l l = True
s e l f . b u l l e t 1 = False
s e l f . b u l l e t 2 = False
s e l f . bazooka = False
s e l f . win = False
s e l f . dead = False

de f r e l oad (s e l f) :
i f s e l f . nu l l :

s e l f . nu l l = False
s e l f . b u l l e t 1 = True
s e l f . o ld = ’n ’

e l i f s e l f . b u l l e t 1 :
s e l f . b u l l e t 1 = False
s e l f . b u l l e t 2 = True
s e l f . o ld = ’b1 ’

e l i f s e l f . b u l l e t 2 :
s e l f . b u l l e t 2 = False
s e l f . bazooka = True
s e l f . o ld = ’b2 ’

de f f i r e_bu l l e t (s e l f) :
i f s e l f . b u l l e t 1 :

s e l f . o ld = ’b1 ’
s e l f . b u l l e t 1 = False
s e l f . nu l l = True
g l oba l SHOT_FIRED

29

SHOT_FIRED = not (SHOT_FIRED)
e l i f s e l f . b u l l e t 2 :

s e l f . o ld = ’b2 ’
s e l f . b u l l e t 2 = False
s e l f . b u l l e t 1 = True
g l oba l SHOT_FIRED
SHOT_FIRED= not (SHOT_FIRED)

e l s e :
r e turn Fal se

de f f i re_bazooka (s e l f) :
i f s e l f . bazooka :

s e l f . o ld = ’b2 ’
s e l f . bazooka = False
s e l f . nu l l = True

de f take_bul l e t (s e l f) :
s e l f . dead = True

de f armor (s e l f) :
i f SHOT_FIRED:

SHOT_FIRED = not (SHOT_FIRED)
e l s e :

p r i n t "Armored f o r no reason ! "
s e l f . o ld = s e l f . o ld

ac t i onDic t = { ’R’ : 1 , ’S ’ : 2 , ’A’ : 3 }

de f e x t r a c t_s t r a t e g i e s (f i l e) :
s t r a t e g i e s = []
with open (f i l e) as f :

r eader = csv . DictReader (f)
f o r row in reader :

s t r a t e g i e s . append (row)
return s t r a t e g i e s

de f strategy_map (s t rategy , player1 , p layer2 , playerTurn) :
i f playerTurn == 1 :

i f p layer1 . nu l l and p layer2 . nu l l :
player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’N vs N ’]]

i f p layer1 . nu l l and p layer2 . bu l l e t 1 :
player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’N vs 1 ’]]

i f p layer1 . nu l l and p layer2 . bu l l e t 2 :
player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’N vs 2 ’]]

i f p layer1 . bu l l e t 1 and p layer2 . nu l l :
player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’ 1 vs N ’]]

30

i f p layer1 . bu l l e t 1 and p layer2 . bu l l e t 1 :
player1 . f i r e_bu l l e t ()
re turn ac t i onDic t [s t r a t e gy [’ 1 vs 1 ’]]

i f p layer1 . bu l l e t 1 and p layer2 . bu l l e t 2 :
player1 . f i r e_bu l l e t ()
re turn ac t i onDic t [s t r a t e gy [’ 1 vs 2 ’]]

i f p layer1 . bu l l e t 2 and p layer2 . nu l l :
player1 . f i r e_bu l l e t ()
re turn ac t i onDic t [s t r a t e gy [’ 2 vs N ’]]

i f p layer1 . bu l l e t 2 and p layer2 . bu l l e t 1 :
player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’ 2 vs 1 ’]]

i f p layer1 . bu l l e t 2 and p layer2 . bu l l e t 2 :
player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’ 2 vs 2 ’]]

i f playerTurn == 2 :
i f p layer1 . nu l l and p layer2 . o ld==’n ’ :

player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’N vs N ’]]

i f p layer1 . nu l l and p layer2 . o ld==’b1 ’ :
player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’N vs 1 ’]]

i f p layer1 . nu l l and p layer2 . o ld==’b2 ’ :
player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’N vs 2 ’]]

i f p layer1 . bu l l e t 1 and p layer2 . o ld==’n ’ :
player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’ 1 vs N ’]]

i f p layer1 . bu l l e t 1 and p layer2 . o ld==’b1 ’ :
player1 . f i r e_bu l l e t ()
re turn ac t i onDic t [s t r a t e gy [’ 1 vs 1 ’]]

i f p layer1 . bu l l e t 1 and p layer2 . o ld==’b2 ’ :
player1 . f i r e_bu l l e t ()
re turn ac t i onDic t [s t r a t e gy [’ 1 vs 2 ’]]

i f p layer1 . bu l l e t 2 and p layer2 . o ld==’n ’ :
player1 . f i r e_bu l l e t ()
re turn ac t i onDic t [s t r a t e gy [’ 2 vs N ’]]

i f p layer1 . bu l l e t 2 and p layer2 . o ld==’b1 ’ :
player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’ 2 vs 1 ’]]

i f p layer1 . bu l l e t 2 and p layer2 . o ld==’b2 ’ :
player1 . r e l oad ()
re turn ac t i onDic t [s t r a t e gy [’ 2 vs 2 ’]]

de f main () :

s t r a t e g i e s = ex t r a c t_s t r a t e g i e s (" Complete_Strategy_Set . csv ")
games = l i s t (i t e r t o o l s . product (s t r a t e g i e s , s t r a t e g i e s))
matrix = []

31

j = 0
array_games = []
f o r game in games :

pr in t game
j = j+1
gameOver = False
playerTurn = [1 , 2]
i = 0
shotFi red = False
bazookaFired = False
p1 = player ()
p2 = player ()
inf_check = 0

whi le not gameOver :
inf_check += 1
i f not p1 . dead and not p2 . dead :

pr in t "Player {} choose : (1) Reload , (2) Shoot ,
(3) Armor (4) Bazooka " . format (s t r (playerTurn [i]))

cho i c e = input (" Choice : \ n")

i f playerTurn [i] == 1 :
cho i c e = strategy_map (game [0] , p1 , p2 ,

playerTurn [i])
e l s e :
///////////////////////
(p2 , p1) now because you ’ re p lay ing wrt p2

cho i c e = strategy_map (game [1] , p2 , p1 ,
playerTurn [i])

///////////////////////

pr in t "Player : " + s t r (playerTurn [i]) +
" Choice : " + s t r (cho i c e)

sys . e x i t ()

i f playerTurn [i] == 1 : # player 1 ’ s turn
i f cho i c e == 1 :

i f shotF i red :
p1 . take_bul l e t ()

e l s e :
p1 . r e l oad ()
i f bazookaFired and

p2 . bazooka == False :
p2 . dead = True

e l i f cho i c e == 2 and p1 . bu l l e t 1
== False and p1 . bu l l e t 2 == False :

pr in t "You have no bu l l e t s !
Choose again ! "

cont inue
e l i f cho i c e == 2 :

32

p1 . f i r e_bu l l e t ()
shotF i red = not (shotF i red)

e l i f cho i c e == 3 :
i f shotF i red :

pr in t " Sh ie lded "
shotF i red = not (shotF i red)

e l i f bazookaFired and
p2 . bazooka == False :

p2 . dead = True
e l s e :

pr in t " Sh ie lded
f o r no reason ! "

i f cho i c e == 1 and shotFi red :
p layer 1 hasn ’ t f i r e d / sh i e l d ed

p1 . take_bul l e t ()

i f p1 . bazooka and not shotF i red :
p1 . f i re_bazooka ()
bazookaFired = not (bazookaFired)

e l i f playerTurn [i] == 2 :
player 2 ’ s turn

i f cho i c e == 1 :
i f shotF i red :

p2 . take_bul l e t ()
e l s e :

p2 . r e l oad ()
i f bazookaFired and

p2 . bazooka == False :
p2 . dead = True

e l i f cho i c e == 2 and p2 . bu l l e t 1
== False and p2 . bu l l e t 2 == False :

pr in t "You have no bu l l e t s !
Choose again ! "

cont inue
e l i f cho i c e == 2 :

p2 . f i r e_bu l l e t ()
i f p1 . bazooka and shotFi red :

p1 . dead = True

shotF i red = not (shotF i red)
e l i f cho i c e == 3 :

i f shotF i red :
pr in t " Sh ie lded "
shotF i red = not (shotF i red)

e l i f bazookaFired and
p2 . bazooka == False :

p2 . dead = True
e l s e :

33

pr in t " Sh ie lded
f o r no reason ! "

e l i f cho i c e == 1 and shotFi red :
p layer 2 hasn ’ t f i r e d / sh i e l d ed

p2 . take_bul l e t ()

e l i f p1 . bazooka and p2 . bazooka
and not shotF i red and not
bazookaFired :

p2 . f i re_bazooka ()
inf_check = 100

e l i f p1 . bazooka and p2 . bazooka
and bazookaFired==False :

inf_check = 100

e l i f p1 . bazooka and not
p2 . bazooka :

p2 . dead = True

e l i f not p1 . bazooka and
p2 . bazooka :

p1 . dead = True

e l i f p1 . dead == False and
bazookaFired and p2 . bazooka :

inf_check = 100

i = (i +1) % 2

i f p1 . dead and p2 . dead or p1 . win
and p2 . win :

cont inue

i f p1 . dead or p2 . win :
pr in t game [1] [" Index "] + " wins ! "
array_games . append ((−1 ,1))
array_games . append (0)
gameOver = True

e l i f p2 . dead or p1 . win :
pr in t game [0] [" Index "] + " wins ! "
array_games . append ((1 ,−1))
array_games . append (1)
gameOver = True

i f inf_check > 100 :
pr in t "Draw ! ! "
array_games . append ((0 , 0))
array_games . append (0 . 5)

34

gameOver = True

i f j%324 == 0 :
matrix . append (array_games)
array_games = []

with open (" out . csv " , "w") as f :
w r i t e r=csv . wr i t e r (f)
f o r row in matrix :

w r i t e r . writerow (row)

matrix2 = []
f o r row in matrix :

row2 = []
f o r column in row :

i f column == 1 :
row2 . append ((1 ,−1))

e l i f column == 0 :
row2 . append ((−1 ,1))

e l s e :
row2 . append ((0 , 0))

matrix2 . append (row2)

with open (" out2 . csv " , "w") as f :
w r i t e r=csv . wr i t e r (f)
f o r row in matrix2 :

wr i t e r . writerow (row)

i f __name__ == ’__main__’ :
main ()

6.3 Python Code - Replicator Dynamics

import csv
import sys
import operator

payoff_matrix = []
share s = [1 . 0/324 f o r i in range (3 2 4)]

with open (" out . csv " , " r ") as f :
r eader = csv . r eader (f)
f o r row in reader :

row = [f l o a t (e l e) f o r e l e in row]
payoff_matrix . append (row)

f o r i in range (1000) :
p r i n t "{}" . format (i +1)
i += 1
shares_matrix = []
f o r row in payoff_matrix :

35

temp = []
f o r payof f , share in z ip (row , share s) :

temp . append (payo f f \ cdot share)
shares_matrix . append (temp)

f i t n e s s_ve c t o r = [sum(row) f o r row in shares_matrix]

ave rage_f i tne s s = sum ([share \ cdot
w f o r share ,w in z ip (shares , f i t n e s s_ve c t o r)])

with open (" rep . csv " , "a ") as f :
w r i t e r = csv . wr i t e r (f)
temprow = [s t r (e l e) f o r e l e in share s] +

[" "] + [s t r (e l e) f o r e l e in f i t n e s s_ve c t o r]
+ [" "] + [s t r (ave rage_f i tne s s)]

w r i t e r . writerow (temprow)

share s = [(s \ cdot w)/ ave rage_f i tne s s f o r s ,w in
z ip (shares , f i t n e s s_ve c t o r)]

d = {}
f o r i in range (3 2 4) :

d [i] = share s [i]

with open (" rep . csv " , "a ") as f :
f . wr i t e ("\n\n")
f . wr i t e (" Sorted : ")
wr i t e r = csv . wr i t e r (f)
wr i t e r . writerow (so r t ed (d . i tems () ,

key=operator . i t emge t t e r (1)))

p r i n t so r t ed (d . i tems () , key=operator . i t emge t t e r (1))

6.4 R Code - To Generate Strategies
This code was written to compute all 324 permutations of the non-dominated strategies per stage.

setwd ("/ Users /William/Dropbox/ Stando f f Game/")
getwd ()

v1 <− c ("R")
v2 <− c ("A" , "R")
v3 <− c ("A")
v4 <− c ("S" , "R")
v5 <− c ("S" , "A" , "R")
v6 <− c ("S" , "A" , "R")
v7 <− c ("R")
v8 <− c ("S" , "A" , "R")
v9 <− c ("S" , "A" , "R")

m9 <− matrix (data = v9 , nrow = 3 , nco l = 1 , byrow = FALSE, dimnames = NULL)

jo in_vector <− f unc t i on (add_V, to_M) {

36

counter <− 1
r <− matrix (data = NA, nrow = length (add_V) \ cdot
dim(to_M) [1] , nco l = 1+dim(to_M) [2] , byrow = FALSE, dimnames = NULL)
f o r (i in 1 : dim(to_M) [1]) {

f o r (j in 1 : l ength (add_V)) {
r [counter ,] <− c (add_V[j] , to_M[i ,])
p r i n t (add_V[j])
counter <− counter + 1

}
}
return (r)

}

m8 <− j o in_vector (v8 , m9)
m7 <− j o in_vector (v7 , m8)
m6 <− j o in_vector (v6 , m7)
m5 <− j o in_vector (v5 , m6)
m4 <− j o in_vector (v4 , m5)
m3 <− j o in_vector (v3 , m4)
m2 <− j o in_vector (v2 , m3)
m1 <− j o in_vector (v1 , m2)

wr i t e . t ab l e (x = m1, f i l e = "/Users /William/Dropbox/ Stando f f Game/ complete . csv ")

37

References
[Axe06] Robert M Axelrod. The Evolution of Cooperation. Basic Books, 2006.

[BK98] Steven J Brams and D Marc Kilgour. Backward induction is not robust: The parity
problem and the uncertainty problem. Theory and Decision, 45(3):263–289, 1998.

[Fri91] Daniel Friedman. Evolutionary games in economics. Econometrica: Journal of the Econo-
metric Society, pages 637–666, 1991.

[FS16] Daniel Friedman and Barry Sinervo. Evolutionary Games in Natural, Social, and Virtual
Worlds. Oxford University Press, 2016.

[Har09] Joseph Harrington. Games, Strategies and Decision Making. Macmillan, 2009.

[KB97] D. Marc Kilgour and Steven J. Brams. The truel. Mathematics Magazine 70, pages
315–326, 1997.

[Kil72] D. Marc Kilgour. The simultaneous truel. International Journal of Game Theory 1, pages
229–242, 1972.

[Kil73] D. Marc Kilgour. Duels, Truels and n-uels. PhD thesis, University of Toronto, 1973.

38

	Introduction
	Model
	Instructions
	Actions and States
	Stage Diagram Two Players, All Strategies
	Stage Diagram Two Players, Non-Dominated Strategies

	Simulation
	R: Generating the Strategy Set
	Python: Execution of Replicator Dynamics

	Results
	Payoff Matrices

	Conclusion
	Appendix
	Two Player Matrices
	Python Code - Standoff Game
	Python Code - Replicator Dynamics
	R Code - To Generate Strategies

